Энциклопедия техники → Что такое Безвихревое течение, что означает и как правильно пишется

Что такое "Безвихревое течение"? Как правильно пишется данное слово. Понятие и трактовка.

Безвихревое течение Безвихревое течение — течение жидкости или газа, в котором отсутствует завихренность поля скоростей, т. е. вектор скорости V всюду в потоке удовлетворяет условию rotV = 0 и поэтому равен градиенту скалярной функции (?), называемой потенциалом скорости (V = grad(?)). Представляет собой частный вид более общего вихревого течения. В Б. т. частицы жидкости не вращаются. Существование и распространённость Б. т. тесно связаны со свойством сохраняемости завихренности в потоке идеальной несжимаемой или баротропной (плотность зависит только от давления) жидкости при наличии потенциала массовых сил, согласно которому, если в начальном участке потока (или в начальный момент времена) имеется Б. т., то оно всюду (и впоследствии) останется безвихревым, и циркуляция скорости по любому замкнутому контуру будет равна нулю. В идеальном газе завихренность (циркуляция) сохраняется для изоэнтропических течений (баротропных течений). Кинематическое свойство безвихренности течения идеального газа связано с его термодинамическими параметрами так называем теоремой Л. Крокко, из которой следует, что при постоянных во всём течении энтропии и полной энтальпии оно является либо безвихревым, либо винтовым (вектор завихренности параллелен вектору скорости). Плоскопараллельное течение такого типа всегда будет безвихревым. Изучение Б. т. существенно упрощается тем, что система уравнений аэро- и гидродинамики сводится к одному уравнению для потенциала скорости (?). В несжимаемой жидкости потенциал скорости удовлетворяет уравнению Лапласа, которое имеет в качестве фундаментальных решений потенциалы источника, диполя и гидродинамических особенностей более высокого порядка (см. Источники и стоки гидродинамические), (см. Источников и стоков метод), причём в силу линейности любая их суперпозиций также является решением. Для важного случая плоского Б. т. несжимаемой жидкости существует комплексный потенциал — аналитическая функция комплексного переменного, действительная и мнимая части которой являются соответственно потенциалом скорости и функцией тока. Задачи об обтекании профилей (см. Профиля теория) и решёток профилей и определении действующих на них сил, о глиссировании, истечении струй, ударе о жидкость и другие были решены благодаря возможности применения методов теории функций комплексного переменного, например метода конформных преобразований. Изучение Б. т. сжимаемого газа — более трудная задача; так как уравнение для потенциала нелинейно. Для плоских течений оно может быть приведено к линейному путём преобразования годографа (см. Годографа метод), часто используемого в задачах дозвуковой аэродинамики (струйные течения, определение аэродинамических характеристик профилей и др.). При обтекании тонких тел упрощение уравнения потенциала проводится на основе возмущений теории. Дозвуковые и сверхзвуковаые возмущённые течения описываются линейными уравнениями, трансзвуковые — нелинейными. Б. т., проходя через искривленный скачок уплотнения, становится вихревым. Однако для достаточно слабого скачка завихренность пропорциональна кубу его интенсивности, и с большой точностью можно считать, что течение остаётся безвихревым. Поток за скачком конечной интенсивности остаётся безвихревым, если угол наклона скачка к направлению однородного набегающего потока всюду одинаков (например, при осесимметричном сверхзвуковом обтекании конуса). Одним из наиболее распространённых методов расчёта сверхзвукового Б. т. является характеристик метод, особенно эффективный в приложении к плоским течениям, где характеристики в плоскости годографа (эпициклоиды) имеют универсальный вид независимо от структуры течения в физической плоскости.
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Х    Ц  Ч  Ш  Щ  Ъ  Ы  Ь  Э  Ю  Я  
Не нашел материала для курсовой или диплома?
Пишем качественные работы
Без плагиата!